2024-05-29

小盟科普丨数据资产管理发展趋势与展望

分享:



党的十九届四中全会首次将“数据”增列为一种生产要素,要求建立健全由市场评价贡献、按贡献决定报酬的机制,标志着以数据为关键要素的数字经济进入新时代。党的二十大报告提出要“加快建设现代化经济体系,着力提高全要素生产率”,充分发挥海量数据和丰富应用场景优势,促进数字技术与实体经济深度融合,赋能传统产业转型升级,催生新产业、新业态、新模式,不断做强、做优、做大我国数字经济。

经过多年发展,以大数据为代表的新技术得到迅猛发展,并渗透到各行各业,企业信息化也快速回归到数据的本身。企业家使用数据整合劳动力、土地、资本三种生产要素进行数字化转型。

为了加快实体经济数字化转型,促进新一代信息技术与实体经济深度融合,发挥数据对企业转型升级的重要作用,数据资产管理应运而生。工业互联网产业联盟组织产业界系统梳理了相关内容,展开数据资产管理系列科普活动。


小盟科普

Q1 数据资产管理发展趋势有哪些?

从信息时代到数字时代,数据由记录业务逐渐转变为智能决策,成为了组织持续发展的核心引擎。未来,数据资产管理将朝着统一化、专业化、敏捷化的方向发展,提高数据资产管理效率,主动赋能业务,推动数据资产安全有序流通,持续运营数据资产,充分发挥数据资产的经济价值和社会价值。


(一)管理理念:从被动响应到主动赋能

随着组织数字化转型的不断深入推进,数据资产管理占组织日常经营管理的比重日渐增加,传统以需求定制开发为主要模式的被动服务形式,已难以满足组织数据服务响应诉求,组织逐步在各业务条线设置数据管理岗位,定期采集数据使用方诉求,构建数据资产管理需求清单,解决数据资产管理难点,跟踪数据应用效果,加深数据人员对业务的理解和认识,主动赋能业务发展。此外,随着数据素养和数字技能的不断提升,数据使用者培养了主动消费意识和能力,以数据资产目录为载体、以自助式数据服务为手段、以全流程安全防护为保障的数据主动消费和管控模式正在形成,在提升数据服务水平的同时,进一步提升数据应用的广度和深度。

(二)组织形态:向专业化与复合型升级

区别于信息化阶段作为IT部门的从属部门,数据资产管理组织与职能已逐步独立化。对于政府,由专门的政府机构承担,在业务部门设立数据管理兼职岗位,首席数据官(Chief Data Officer,CDO)制度也出现在了深圳、浙江等地的规划中。对于企业,广东、上海等地发布相关政策推动企业设置首席数据官。此外,在业务部门与IT部门设置专职或兼职数据管理员,推动数据资产管理有效开展。

(三)管理方式:敏捷协同的一体化管理

传统的数据资产管理建设往往由多个分散的管理活动和解决方案组成,造成数据资产管理各个环节之间的脱节(包括开发与管理、管理与运营)的脱节,使得数据从生产端到消费端的开发效率降低。例如,在开发阶段应遵循的数据标准规范,在管理阶段需要强依赖专业数据管理角色和过程监控才可能实现。同时,由于多数企业忽视了数据运营,使数据消费端未向数据资产生产端反馈有效的用户体验。

(四)技术架构:面向云的Data Fabric

随着数据技术组件日益丰富,数据分布日趋分散,Gartner认为Data Fabric已成为支持组装式数据分析及其各种组件的基础架构,通过在大数据技术设计上复用数据集成方式,Data Fabric可缩短30%的集成设计时间、30%的部署时间和70%的维护时间。Data Fabric是一种新型、动态的数据架构设计理念,是综合利用元数据、机器学习和知识图谱等技术,打造一个更加自动化、面向业务、兼容异构的企业数据供应体系,以支撑更加统一、协同、智能的数据访问,有分析师称之为将“恰当”的数据在“恰当”的时间提供给“恰当”的人。

(五)管理手段:自动化与智能化广泛应用  

随着数据复杂性持续增加,依靠“手工人力”的数据资产管理手段将逐步被“自动智能”的“专业工具”取代,覆盖数据资源化、数据资产化的多个活动职能,在不影响数据资产管理效果的同时,极大地降低了数据资产管理成本。具体来说,是指利用AI、ML、RPA、语义分析、可视化等技术,自动识别或匹配数据规则(包括数据标准规则、数据质量规则、数据安全规则等),自动执行数据规则校验,或是自动发现数据之间的关联关系,并以可视化的方式展现。此外,可利用VR、AR等技术,帮助数据使用者探索数据和挖掘数据,提升数据应用的趣味性,降低数据使用门槛,扩大数据使用对象范围。

(六)运营模式:构建多元化的数据生态

运营数据是持续创造数据价值的有效方式,多元化的数据生态通过引入多维度数据、多类参与方、多种产品形态,进一步拓展数据应用场景和数据合作方式,为数据运营提供了良好的环境。

(七)数据安全:兼顾合规与发展

首先,应意识到数据安全与数据资产合理利用并不冲突。两者之间存在着互相促进的关系。数据安全是合理利用的前提条件,合理利用是数据安全保护的最终目的。只有做好数据安全保护,才能让数据所有者愿意授予组织或其他主体对数据的使用权利,进一步推动数据资产流通。GDPR倡导平衡“数据权利保护”与“数据自由流通”的理念,在赋予数据主体权利的同时,强调个人数据的自由流通不得因为在个人数据处理过程中保护自然人权利而被限制或禁止。

其次,应从数据安全管理和数据资产流通两方面同步寻找平衡点。在数据安全管理侧,通过建立数据安全管理机制,制定数据安全分类分级标准和使用技术规范,提升数据安全治理能力;在数据资产流通侧,将数据安全合规、个人信息保护等要求作为基本“红线”,将其潜在风险作为成本指标,在不触碰“红线”的前提下,进行数据资产流通的收益分析,探索数据安全与资产流通的均衡方案。


Q2 数据资产管理未来发展路线是什么?

在数据当前,数据资产管理呈现蓬勃发展的态势,为数据要素市场的发展提供强劲动力,为数字经济发展奠定良好基础。在国家规划的大力推动下,在行业政策的有效指导下,我们期待数据资产管理将稳步前进,促进数据资产价值将进一步释放。

一是明确责权利,有效推进管理。明确数据资产管理角色与职责,从业务侧出发确定数据资产的责任人,构建数据资产管理认责体系;制定数据发展战略,统筹规划数据资产管理,逐步建立健全包括数字型人才、管理型人才、技术型人才、业务型人才的团队;开展数据资产管理过程管理,优化管理资源,提高管理效率。

二是合理引进技术,提升敏捷能力。在数据资产管理的过程中,合理引进包括云计算、人工智能、机器学习、知识图谱等创新技术,进一步提升数据资产管理的智能化、自动化水平,降低数据资产管理的人力投入与风险成本;建立数据资产管理敏捷组织和敏捷机制,采用DataOps敏捷技术,及时响应业务和需求的变化。

三是着眼业务发展,释放数据价值。从业务侧出发制定数据资产标准规则,确定数据资产质量预期水平;明确数据资产的业务应用场景,增强数据决策的准确性和实时性,满足业务的数据需求;评估数据资产价值,构建数据资产运营体系,建立科学的正向反馈和闭环管理机制,提高数据资产的服务和应用效果。

四是加强数据合规,注重风险风控。遵循《网络安全法》、《数据安全法》和《个人信息保护法》相关要求,构建数据安全管理体系,形成数据安全分类分级标准,覆盖数据资产管理全流程、各环节;制定数据资产管理的风险应急机制,开展数据安全合规内外部审计,确保数据资产安全可控。

五是持续迭代完善,形成良性闭环。培养数据文化,提高数据素养,鼓励业务人员参与数据资产的管理与应用,构建良好的沟通与协作机制;开展常态化数据资产管理检查,建立数据资产管理基线,定期总结问题形成业务案例,发起多方讨论商议,不断优化数据资产管理策略和路径


内容来源:《数据资产管理实践白皮书(6.0版)》

联系方式:马老师 17332378374(同微信)

mawenda@caict.ac.cn